有關(guān)高二數學(xué)《導數》知識點(diǎn)總結
在我們平凡無(wú)奇的學(xué)生時(shí)代,大家最熟悉的就是知識點(diǎn)吧?知識點(diǎn)是傳遞信息的基本單位,知識點(diǎn)對提高學(xué)習導航具有重要的作用。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?下面是小編整理的高二數學(xué)《導數》知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
1、導數的定義:在點(diǎn)處的導數記作
2.導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率
①=f/(x0)表示過(guò)曲線(xiàn)=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數的導數公式
4.導數的四則運算法則
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;
(3)求可導函數最大值與最小值的步驟:
ⅰ求的根;ⅱ把根與區間端點(diǎn)函數值比較,最大的為最大值,最小的是最小值。
導數與物理,幾何,代數關(guān)系密切:在幾何中可求切線(xiàn);在代數中可求瞬時(shí)變化率;在物理中可求速度、加速度。學(xué)好導數至關(guān)重要,一起來(lái)學(xué)習高二數學(xué)導數的定義知識點(diǎn)歸納吧!
導數是微積分中的重要基礎概念。當函數=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導數,記作f(x0)或df(x0)/dx。
導數是函數的局部性質(zhì)。一個(gè)函數在某一點(diǎn)的導數描述了這個(gè)函數在這一點(diǎn)附近的變化率。如果函數的自變量和取值都是實(shí)數的話(huà),函數在某一點(diǎn)的導數就是該函數所代表的曲線(xiàn)在這一點(diǎn)上的切線(xiàn)斜率。導數的本質(zhì)是通過(guò)極限的`概念對函數進(jìn)行局部的線(xiàn)性逼近。例如在運動(dòng)學(xué)中,物體的位移對于時(shí)間的導數就是物體的瞬時(shí)速度。
不是所有的函數都有導數,一個(gè)函數也不一定在所有的點(diǎn)上都有導數。若某函數在某一點(diǎn)導數存在,則稱(chēng)其在這一點(diǎn)可導,否則稱(chēng)為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對于可導的函數f(x),xf(x)也是一個(gè)函數,稱(chēng)作f(x)的導函數。尋找已知的函數在某點(diǎn)的導數或其導函數的過(guò)程稱(chēng)為求導。實(shí)質(zhì)上,求導就是一個(gè)求極限的過(guò)程,導數的四則運算法則也于極限的四則運算法則。反之,已知導函數也可以倒過(guò)來(lái)求原來(lái)的函數,即不定積分。微積分基本定理說(shuō)明了求原函數與積分是等價(jià)的。求導和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎的概念。
設函數=f(x)在點(diǎn)x0的某個(gè)鄰域內有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內時(shí),相應地函數取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當Δx→0時(shí)極限存在,則稱(chēng)函數=f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限為函數=f(x)在點(diǎn)x0處的導數記為f(x0),也記作│x=x0或d/dx│x=x0。
【有關(guān)高二數學(xué)《導數》知識點(diǎn)總結】相關(guān)文章: