久久99国产亚洲高清观看首页,久久久久综合精品福利啪啪,国产成人免费午夜在线观看,91视频网,久久精品国产福利国产琪琪,久久国产精品免费观看,国产精品成

介值定理和零點(diǎn)定理的區別

回答
瑞文問(wèn)答

2024-06-18

介值定理:連續函數的在一個(gè)區間內的函數值肯定介于最大值和最小值之間。
零點(diǎn)定理:設函數f(x)在閉區間[a,b]上連續,且f(a)與 f(b)異號(即f(a)× f(b)<0),那么在開(kāi)區間(a,b)內至少有函數f(x)的一個(gè)零點(diǎn),即至少有一點(diǎn)ξ(a<ξ零點(diǎn)定理是介值定理的特殊情形。

擴展資料

  介值定理和零點(diǎn)定理的區別

  介值定理,又名中間值定理,是閉區間上連續函數的性質(zhì)之一,閉區間連續函數的重要性質(zhì)之一。在數學(xué)分析中,介值定理表明,如果定義域為[a,b]的連續函數f,那么在區間內的某個(gè)點(diǎn),它可以在f(a)和f(b)之間取任何值,也就是說(shuō),介值定理是在連續函數的一個(gè)區間內的函數值肯定介于最大值和最小值之間。

  零點(diǎn)定理與介值定理意思差不多,零點(diǎn)定理是與x軸的交點(diǎn)介值定理是與兩數之間的交點(diǎn) 其實(shí)質(zhì)都是講函數連續性的。 只要是連續函數,問(wèn)題就明了。 連續在于一個(gè) x 有一個(gè)y值的對應性。

丰镇市| 四会市| 桦南县| 丁青县| 古田县| 保定市| 准格尔旗| 龙胜| 吉木乃县| 惠来县| 慈溪市| 岱山县| 鹤庆县| 龙陵县| 吉林市| 陇南市| 稷山县| 望江县| 杂多县| 天祝| 井冈山市| 临海市| 广州市| 金坛市| 南乐县| 化州市| 邢台县| 巫山县| 微山县| 荣昌县| 区。| 宜州市| 红河县| 石城县| 霞浦县| 河南省| 平舆县| 布尔津县| 水富县| 拉萨市| 安化县|