零點定理:設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與 f(b)異號(即f(a)× f(b)<0),那么在開區(qū)間(a,b)內(nèi)至少有函數(shù)f(x)的一個零點,即至少有一點ξ(a<ξ零點定理是介值定理的特殊情形。 ">

久久99国产亚洲高清观看首页,久久久久综合精品福利啪啪,国产成人免费午夜在线观看,91视频网,久久精品国产福利国产琪琪,久久国产精品免费观看,国产精品成

介值定理和零點定理的區(qū)別

回答
瑞文問答

2024-06-18

介值定理:連續(xù)函數(shù)的在一個區(qū)間內(nèi)的函數(shù)值肯定介于最大值和最小值之間。
零點定理:設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與 f(b)異號(即f(a)× f(b)<0),那么在開區(qū)間(a,b)內(nèi)至少有函數(shù)f(x)的一個零點,即至少有一點ξ(a<ξ零點定理是介值定理的特殊情形。

擴展資料

  介值定理和零點定理的區(qū)別

  介值定理,又名中間值定理,是閉區(qū)間上連續(xù)函數(shù)的性質(zhì)之一,閉區(qū)間連續(xù)函數(shù)的重要性質(zhì)之一。在數(shù)學分析中,介值定理表明,如果定義域為[a,b]的連續(xù)函數(shù)f,那么在區(qū)間內(nèi)的某個點,它可以在f(a)和f(b)之間取任何值,也就是說,介值定理是在連續(xù)函數(shù)的一個區(qū)間內(nèi)的函數(shù)值肯定介于最大值和最小值之間。

  零點定理與介值定理意思差不多,零點定理是與x軸的交點介值定理是與兩數(shù)之間的交點 其實質(zhì)都是講函數(shù)連續(xù)性的。 只要是連續(xù)函數(shù),問題就明了。 連續(xù)在于一個 x 有一個y值的對應性。

漳州市| 新安县| 昭苏县| 普宁市| 共和县| 平邑县| 科技| 慈溪市| 新干县| 锡林浩特市| 建宁县| 剑阁县| 荔波县| 梧州市| 阿克陶县| 东海县| 肥西县| 工布江达县| 凯里市| 芦山县| 澳门| 旬邑县| 青阳县| 安徽省| 海口市| 黄梅县| 新竹市| 泰和县| 保定市| 米林县| 彝良县| 罗山县| 边坝县| 万州区| 威信县| 靖远县| 繁昌县| 六盘水市| 贡山| 上高县| 三穗县|