久久99国产亚洲高清观看首页,久久久久综合精品福利啪啪,国产成人免费午夜在线观看,91视频网,久久精品国产福利国产琪琪,久久国产精品免费观看,国产精品成

《函數的概念》說(shuō)課稿

時(shí)間:2022-07-21 10:51:07 說(shuō)課稿 我要投稿

《函數的概念》說(shuō)課稿(通用9篇)

  作為一位兢兢業(yè)業(yè)的人民教師,通常需要準備好一份說(shuō)課稿,說(shuō)課稿有助于提高教師的語(yǔ)言表達能力。那么你有了解過(guò)說(shuō)課稿嗎?以下是小編整理的《函數的概念》說(shuō)課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

《函數的概念》說(shuō)課稿(通用9篇)

  《函數的概念》說(shuō)課稿 篇1

  一、說(shuō)教材

  首先談?wù)勎覍滩牡睦斫猓逗瘮档母拍睢肥潜睅煷蟀姹匦抟坏诙?.1的內容,本節課的內容是函數概念。函數內容是高中數學(xué)學(xué)習的一條主線(xiàn),它貫穿整個(gè)高中數學(xué)學(xué)習中。又是溝通代數、方程、不等式、數列、三角函數、解析幾何、導數等內容的橋梁,同時(shí)也是今后進(jìn)一步學(xué)習高等數學(xué)的基礎。函數學(xué)習過(guò)程經(jīng)歷了直觀(guān)感知、觀(guān)察分析、歸納類(lèi)比、抽象概括等思維過(guò)程,通過(guò)學(xué)習可以提高了學(xué)生的數學(xué)思維能力。

  二、說(shuō)學(xué)情

  接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。新課標指出學(xué)生是教學(xué)的主體,所以要成為符合新課標要求的教師,深入了解所面對的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學(xué)生對本節課的學(xué)習是相對比較容易的。

  三、說(shuō)教學(xué)目標

  根據以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:

  (一)知識與技能

  理解函數的概念,能對具體函數指出定義域、對應法則、值域,能夠正確使用“區間”符號表示某些函數的定義域、值域。

  (二)過(guò)程與方法

  通過(guò)實(shí)例,進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型,在此基礎上學(xué)習用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用進(jìn)一步加深集合與對應數學(xué)思想方法。

  (三)情感態(tài)度價(jià)值觀(guān)

  在自主探索中感受到成功的喜悅,激發(fā)學(xué)習數學(xué)的興趣。

  四、說(shuō)教學(xué)重難點(diǎn)

  我認為一節好的數學(xué)課,從教學(xué)內容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學(xué)重點(diǎn)是:函數的模型化思想,函數的三要素。本節課的教學(xué)難點(diǎn)是:符號“y=f(x)”的含義,函數定義域、值域的區間表示,從具體實(shí)例中抽象出函數概念。

  五、說(shuō)教法和學(xué)法

  現代教學(xué)理論認為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習的主體,教師是學(xué)習的組織者、引導者,教學(xué)的一切活動(dòng)都必須以強調學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據這一教學(xué)理念,結合本節課的內容特點(diǎn)和學(xué)生的心理特征與認知規律以問(wèn)題為主線(xiàn),我采用啟發(fā)法、講授法、小組合作、自主探究等教學(xué)方法。

  六、說(shuō)教學(xué)過(guò)程

  下面我將重點(diǎn)談?wù)勎覍虒W(xué)過(guò)程的設計。

  (一)新課導入

  首先是導入環(huán)節,提問(wèn):關(guān)于函數你知道什么?在初中階段對函數是如何下定義的?你能否舉一個(gè)例子。從而引出本節課的課題《函數概念》。

  利用初中的函數概念進(jìn)行導入,拉近學(xué)生與新知識之間的距離,幫助學(xué)生進(jìn)一步完善知識框架行程知識體系。

  (二)新知探索

  接下來(lái)是教學(xué)中最重要的新知探索環(huán)節,我主要采用講解法、小組合作、自主探究法等。

  首先利用多媒體展示生活實(shí)例

  (1)某山的海拔高度與氣溫的變化關(guān)系;

  (2)汽車(chē)勻速行駛,路程和時(shí)間的變化關(guān)系;

  (3)沸點(diǎn)和氣壓的變化關(guān)系。

  引導學(xué)生分析歸納以上三個(gè)實(shí)例,他們之間有什么共同點(diǎn),并根據初中所學(xué)函數的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量之間的關(guān)系是否為函數關(guān)系。

  預設:

  ①都有兩個(gè)非空數集A、B;

  ②兩個(gè)數集之間都有一種確定的對應關(guān)系;

  ③對于數集A中的每一個(gè)x,按照某種對應關(guān)系f,在數集B中都有唯一確定的y值和它對應。

  接下來(lái)引導學(xué)生思考通過(guò)對上述實(shí)例的共同點(diǎn)并結合課本歸納函數的概念。組織學(xué)生閱讀課本,在閱讀過(guò)程中注意思考以下問(wèn)題

  問(wèn)題1:函數的概念是什么?初中與高中對函數概念的定義的異同點(diǎn)是什么?符號“x”的含義是什么?

  問(wèn)題2:構成函數的三要素是什么?

  問(wèn)題3:區間的概念是什么?區間與集合的關(guān)系是什么?在數軸上如何表示區間?

  十分鐘過(guò)后,組織學(xué)生進(jìn)行全班交流。

  預設:函數的概念:給定兩個(gè)非空數集A和B,如果按照某個(gè)對應關(guān)系f,對于集合A中任何一個(gè)數x,在集合B中都存在唯一確定的數f(x)與之對應,那么就把這對應關(guān)系f叫作定義在幾何A上的函數,記作f:A→B,或y=f(x),x∈A。此時(shí),x叫做自變量,集合A叫做函數的定義域,集合{f(x)▏x∈A}叫作函數的值域。

  函數的三要素包括:定義域、值域、對應法則。

  區間:

  為了使得學(xué)生對函數概念的本質(zhì)了解的更加深入此時(shí)進(jìn)行追問(wèn)

  追問(wèn)1:初中的函數概念與高中的函數概念有什么異同點(diǎn)?

  講解過(guò)程中注意強調,函數的本質(zhì)為兩個(gè)數集之間都有一種確定的對應關(guān)系,而且是一對一,或者多對一,不能一對多。

  追問(wèn)2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數嗎?

  講解過(guò)程中注意強調,符號“y=f(x)”是函數符號,可以用任意的字母表示,f(x)表示與x對應的函數值,一個(gè)數不是f與x相乘。

  追問(wèn)3:對應關(guān)系f可以是什么形式?

  講解過(guò)程中注意強調,對應關(guān)系f可以是解析式、圖象、表格

  追問(wèn)4:函數的三要素可以缺失嗎?指出三個(gè)實(shí)例中的三要素分別是什么。

  講解過(guò)程中注意強調,函數的三要素缺一不可。

  追問(wèn)5:用區間表示三個(gè)實(shí)例的定義域和值域。

  設計意圖:在這個(gè)過(guò)程當中我將課堂完全交給學(xué)生,教師發(fā)揮組織者,引導者的作用,在運用啟發(fā)性的原則,學(xué)生能夠獨立思考問(wèn)題,動(dòng)手操作,還能在這個(gè)過(guò)程中和同學(xué)之間討論,加強了學(xué)生們之間的交流,這樣有利于培養學(xué)生們的合作意識和探究能力。

  (三)課堂練習

  接下來(lái)是鞏固提高環(huán)節。

  組織學(xué)生自己列舉幾個(gè)生活中有關(guān)函數的例子,并用定義加以描述,指出函數的定義域和值域并用區間表示。

  這樣的問(wèn)題的設置,讓學(xué)生對知識進(jìn)一步鞏固,讓學(xué)生逐漸熟練掌握。

  (四)小結作業(yè)

  在課程的最后我會(huì )提問(wèn):今天有什么收獲?

  引導學(xué)生回顧:函數的概念、函數的三要素、區間的表示。

  本節課的課后作業(yè)我設計為:

  1.求解下列函數的值

  已知f(x)=5x-3,求發(fā)(x)=4。

  2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°

  (1)試用解析表達式將橫截面中水的面積A表示成水深h的函數

  (2)確定函數的定義域和值域

  (3)嘗試繪制函數的圖象

  這樣的設計能讓學(xué)生理解本節課的核心,并為下節課學(xué)習函數的表示方法做鋪墊。

  《函數的概念》說(shuō)課稿 篇2

  一、說(shuō)課內容:

  蘇教版九年級數學(xué)下冊第六章第一節的二次函數的概念及相關(guān)習題二、教材分析:

  1、教材的地位和作用這節課是在學(xué)生已經(jīng)學(xué)習了一次函數、正比例函數、反比例函數的基礎上,來(lái)學(xué)習二次函數的概念。二次函數是初中階段研究的最后一個(gè)具體的函數,也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著(zhù)密切的聯(lián)系。進(jìn)一步學(xué)習二次函數將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數形結合”的重要思想。而本節課的二次函數的概念是學(xué)習二次函數的基礎,是為后來(lái)學(xué)習二次函數的圖象做鋪墊。所以這節課在整個(gè)教材中具有承上啟下的重要作用。

  2、教學(xué)目標和要求:

  (1)知識與技能:使學(xué)生理解二次函數的概念,掌握根據實(shí)際問(wèn)題列出二次函數關(guān)系式的方法,并了解如何根據實(shí)際問(wèn)題確定自變量的取值范圍。

  (2)過(guò)程與方法:復習舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力。

  (3)情感、態(tài)度與價(jià)值觀(guān):通過(guò)觀(guān)察、操作、交流歸納等數學(xué)活動(dòng)加深對二次函數概念的理解,發(fā)展學(xué)生的數學(xué)思維,增強學(xué)好數學(xué)的愿望與信心。

  3、教學(xué)重點(diǎn):對二次函數概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數解析式和確定自變量的取值范圍。

  二、教法學(xué)法設計:

  1、從創(chuàng )設情境入手,通過(guò)知識再現,孕伏教學(xué)過(guò)程。

  2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢教學(xué)過(guò)程。

  3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程四。

  三、教學(xué)過(guò)程:

  (一)復習提問(wèn)

  1.什么叫函數?我們之前學(xué)過(guò)了那些函數?(一次函數,正比例函數,反比例函數)

  2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(y=kx+b)的自變量是什么?函數是什么?常量是什么?為什么要有k≠0的條件?k值對函數性質(zhì)有什么影響?

  (二)設計意圖

  復習這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調k≠0的條件,以備與二次函數中的a進(jìn)行比較。

  引入新課函數是研究?jì)蓚(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數,反比例函數和一次函數。

  看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系:

  例1、圓的半徑是r(cm)時(shí),面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。

  例2、用周長(cháng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(cháng)x(m)之間的關(guān)系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0<x<10)。

  例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲蓄轉存。如果存款額是100元,那么請問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0<x<1)。

  教師提問(wèn):以上三個(gè)例子所列出的函數與一次函數有何相同點(diǎn)與不同點(diǎn)?

  (三)講解新課以上函數不同于我們所學(xué)過(guò)的一次函數,正比例函數,反比例函數,我們就把這種函數稱(chēng)為二次函數。

  二次函數的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數)的函數叫做二次函數。

  鞏固對二次函數概念的理解:

  1、強調“形如”,即由形來(lái)定義函數名稱(chēng)。二次函數即y是關(guān)于x的二次多項式(關(guān)于的x代數式一定要是整式)。

  2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)

  3、為什么二次函數定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

  4、在例3中,二次函數y=100x2+200x+100中,a=100,b=200,c=100.

  5、b和c是否可以為零?

  (四)鞏固練習

  已知一個(gè)直角三角形的兩條直角邊長(cháng)的和是10cm。

  (1)當它的一條直角邊的長(cháng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

  (2)設這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數關(guān)系式。

  此題由具體數據逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習的難度。

  (五)小結思考:本節課你有哪些收獲?還有什么不清楚的地方?

  讓學(xué)生來(lái)談本節課的收獲,培養學(xué)生自我檢查、自我小結的良好習慣,將知識進(jìn)行整理并系統化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補充。

  (六)作業(yè)布置

  必做題:

  正方形的邊長(cháng)為4,如果邊長(cháng)增加x,則面積增加y,求y關(guān)于x的函數關(guān)系式。這個(gè)函數是二次函數嗎?

  在長(cháng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(cháng)為xcm的正方形,寫(xiě)出余下木板的面積y(cm2)與正方形邊長(cháng)x(cm)之間的函數關(guān)系,并注明自變量的取值范圍?

  選做題:

  1.已知函數是二次函數,求m的值?

  2.試在平面直角坐標系畫(huà)出二次函數y=x2和y=-x2圖象?

  作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現新課標人人學(xué)有價(jià)值的數學(xué),不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學(xué)生繼續學(xué)習二次函數圖象的興趣。

  《函數的概念》說(shuō)課稿 篇3

  一、教材分析

  1、教材的地位和作用:

  函數是數學(xué)中最主要的概念之一,而函數概念貫穿在中學(xué)數學(xué)的始終,概念是數學(xué)的基礎,概念性強是函數理論的一個(gè)顯著(zhù)特點(diǎn),只有對概念作到深刻理解,才能正確靈活地加以應用。本課中學(xué)生對函數概念理解的程度會(huì )直接影響數學(xué)其它知識的學(xué)習,所以函數的第一課時(shí)非常的重要。

  2、教學(xué)目標及確立的依據:

  教學(xué)目標:

  (1)教學(xué)知識目標:了解對應和映射概念、理解函數的近代定義、函數三要素,以及對函數抽象符號的理解。

  (2)能力訓練目標:通過(guò)教學(xué)培養學(xué)生的抽象概括能力、邏輯思維能力。

  (3)德育滲透目標:使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀(guān)點(diǎn)。

  教學(xué)目標確立的依據:

  函數是數學(xué)中最主要的概念之一,而函數概念貫穿整個(gè)中學(xué)數學(xué),如:數、式、方程、函數、排列組合、數列極限等都是以函數為中心的代數。加強函數教學(xué)可幫助學(xué)生學(xué)好其他的數學(xué)內容。而掌握好函數的概念是學(xué)好函數的基石。

  3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據:

  教學(xué)重點(diǎn):映射的概念,函數的近代概念、函數的三要素及函數符號的理解。

  教學(xué)難點(diǎn):映射的概念,函數近代概念,及函數符號的理解。

  重點(diǎn)難點(diǎn)確立的依據:

  映射的概念和函數的近代定義抽象性都比較強,要求學(xué)生的理性認識的能力也比較高,對于剛剛升入高中不久的學(xué)生來(lái)說(shuō)不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來(lái)高考有一種“函數熱”的趨勢,所以本節的重點(diǎn)難點(diǎn)必然落在映射的概念和函數的近代定義及函數符號的理解與運用上。

  二、教材的處理:

  將映射的定義及類(lèi)比手法的運用作為本課突破難點(diǎn)的關(guān)鍵。函數的定義,是以集合、映射的觀(guān)點(diǎn)給出,這與初中教材變量值與對應觀(guān)點(diǎn)給出不一樣了,從而給本身就很抽象的函數概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調動(dòng)學(xué)生的學(xué)習熱情與參與意識,運用引導對比的手法,啟發(fā)引導學(xué)生進(jìn)行有目的的反復比較幾個(gè)概念的異同,使學(xué)生真正對函數的概念有很準確的認識。

  三、教學(xué)方法和學(xué)法

  教學(xué)方法:講授為主,學(xué)生自主預習為輔。

  依據是:因為以新的觀(guān)點(diǎn)認識函數概念及函數符號與運用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項,并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數的概念及符號的運用在學(xué)生的思想和知識結構中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識打下堅實(shí)的基礎。

  四、教學(xué)程序

  一、課程導入

  通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對應法則可以將兩個(gè)非空集合聯(lián)系在一起。

  例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對應法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

  二.新課講授:

  (1)接著(zhù)再通過(guò)幻燈片給出六組學(xué)生熟悉的數集的對應關(guān)系引導學(xué)生總結歸納它們的共同性質(zhì)(一對一,多對一),進(jìn)而給出映射的概念,表示符號f:A→B,及原像和像的定義。強調指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應法則f。進(jìn)一步引導學(xué)生總結判斷一個(gè)從A到B的對應是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過(guò)對應法則f在B中是否有唯一確定的元素與之對應。

  (2)鞏固練習課本52頁(yè)第八題。

  此練習能讓學(xué)生更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

  例1.給出學(xué)生初中學(xué)過(guò)的函數的傳統定義和幾個(gè)簡(jiǎn)單的一次、二次函數,通過(guò)畫(huà)圖表示這些函數的對應關(guān)系,引導學(xué)生發(fā)現它們是特殊的映射進(jìn)而給出函數的近代定義(設A、B是兩個(gè)非空集合,如果按照某種對應法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對應則這樣的對應叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應法則f),并說(shuō)明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{f(x):x∈A}叫做函數的值域。

  三.講解例題

  例1.問(wèn)y=1(x∈A)是不是函數?

  解:y=1可以化為y=0+1

  畫(huà)圖可以知道從x的取值范圍到y的取值范圍的對應是“多對一”是從非空數集到非空數集的映射,所以它是函數。

  [注]:引導學(xué)生從集合,映射的觀(guān)點(diǎn)認識函數的定義。

  四.課時(shí)小結:

  1.映射的定義。

  2.函數的近代定義。

  3.函數的三要素及符號的正確理解和應用。

  4.函數近代定義的五大注意點(diǎn)。

  五.課后作業(yè)及板書(shū)設計

  書(shū)本P51習題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。

  預習函數三要素的定義域,并能求簡(jiǎn)單函數的定義域。

  《函數的概念》說(shuō)課稿 篇4

  一、教材分析

  本節課選自《普通高中課程標準數學(xué)教科書(shū)-必修1》(人教A版)《1.2.1 函數的概念》共3課時(shí),本節課是第1課時(shí)。

  托馬斯說(shuō):“函數概念是近代數學(xué)思想之花”。 生活中的許多現象如物體運動(dòng),氣溫升降,投資理財等都可以用函數的模型來(lái)刻畫(huà),是我們更好地了解自己、認識世界和預測未來(lái)的重要工具。

  函數是數學(xué)的重要的基礎概念之一,是高等數學(xué)重多學(xué)科的基礎概念和重要的研究對象。同時(shí)函數也是物理學(xué)等其他學(xué)科的重要基礎知識和研究工具,教學(xué)內容中蘊涵著(zhù)極其豐富的辯證思想。函數的的重要性正如恩格斯所說(shuō):“數學(xué)中的轉折點(diǎn)是笛卡爾的變數,有了變數,運動(dòng)就進(jìn)入了數學(xué);有了變數,辯證法就進(jìn)入了數學(xué)”。

  二、學(xué)生學(xué)習情況分析

  函數是中學(xué)數學(xué)的主體內容,學(xué)生在中學(xué)階段對函數的認識分三個(gè)階段:

  (一)初中從運動(dòng)變化的角度來(lái)刻畫(huà)函數,初步認識正比例、反比例、一次和二次函數;

  (二)高中用集合與對應的觀(guān)點(diǎn)來(lái)刻畫(huà)函數,研究函數的性質(zhì),學(xué)習典型的對、指、冪和三解函數;

  (三)高中用導數工具研究函數的單調性和最值。

  1.有利條件

  現代教育心理學(xué)的研究認為,有效的概念教學(xué)是建立在學(xué)生已有知識結構的基礎上的,因此教師在設計教學(xué)的過(guò)程中必須注意在學(xué)生已有知識結構中尋找新概念的固著(zhù)點(diǎn),引導學(xué)生通過(guò)同化或順應,掌握新概念,進(jìn)而完善知識結構。

  初中用運動(dòng)變化的觀(guān)點(diǎn)對函數進(jìn)行定義的,它反映了歷史上人們對它的一種認識,而且這個(gè)定義較為直觀(guān),易于接受,因此按照由淺入深、力求符合學(xué)生認知規律的內容編排原則,函數概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對應的觀(guān)點(diǎn)研究函數打下了一定的基礎。

  2.不利條件

  用集合與對應的觀(guān)點(diǎn)來(lái)定義函數,形式和內容上都是比較抽象的,這對學(xué)生的理解能力是一個(gè)挑戰,是本節課教學(xué)的一個(gè)不利條件。

  三、教學(xué)目標分析

  課標要求:通過(guò)豐富實(shí)例,進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型,在此基礎上學(xué)習用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用;了解構成函數的要素,會(huì )求一些簡(jiǎn)單函數的定義域和值域.

  1.知識與能力目標:

  ⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質(zhì)屬性;

  ⑵理解函數的三要素的含義及其相互關(guān)系;

  ⑶會(huì )求簡(jiǎn)單函數的定義域和值域

  2.過(guò)程與方法目標:

  ⑴通過(guò)豐富實(shí)例,使學(xué)生建立起函數概念的背景,體會(huì )函數是描述變量之間依賴(lài)關(guān)系的數學(xué)模型;

  ⑵在函數實(shí)例中,通過(guò)對關(guān)鍵詞的強調和引導使學(xué)發(fā)現它們的共同特征,在此基礎上再用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用.

  3.情感、態(tài)度與價(jià)值觀(guān)目標:

  感受生活中的數學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀(guān)點(diǎn)。

  四、教學(xué)重點(diǎn)、難點(diǎn)分析

  1.教學(xué)重點(diǎn):對函數概念的理解,用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數;

  重點(diǎn)依據:初中是從變量的角度來(lái)定義函數,高中是用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數。二者反映的本質(zhì)是一致的,即“函數是一種對應關(guān)系”。 但是,初中定義并未完全揭示出函數概念的本質(zhì),對y?1這樣的函數用運動(dòng)變化的觀(guān)點(diǎn)也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個(gè)數集之間的一種對應關(guān)系,按照這種觀(guān)點(diǎn),使我們對函數概念有了更深一層的認識,也很容易說(shuō)明y?1這函數表達式。因此,分析兩種函數概念的關(guān)系,讓學(xué)生融會(huì )貫通地理解函數的概念應為本節課的重點(diǎn)。

  突出重點(diǎn):重點(diǎn)的突出依賴(lài)于對函數概念本質(zhì)屬性的把握,使學(xué)生通過(guò)表面的語(yǔ)言描述抓住概念的精髓。

  2.教學(xué)難點(diǎn):

  第一:從實(shí)際問(wèn)題中提煉出抽象的概念;

  第二:符號“y=f(x)”的含義的理解.

  難點(diǎn)依據:數學(xué)語(yǔ)言的抽象概括難度較大,對符號y=f(x)的理解會(huì )受到以前知識的負遷移。

  突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進(jìn)行說(shuō)明。

  五、教法與學(xué)法分析

  1.教法分析

  本節課我主要采用教師導學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識基礎,注重概念的形成過(guò)程,從初中的函數概念自然過(guò)度到函數的近代定我。

  2.學(xué)法分析

  在教學(xué)過(guò)程中我注意在教學(xué)中引導學(xué)生用模型法分析函數問(wèn)題、通過(guò)自主學(xué)習法總結“區間”的知識。

  《函數的概念》說(shuō)課稿 篇5

  一、教材分析及處理

  函數是高中數學(xué)的重要內容之一,函數的基礎知識在數學(xué)和其他許多學(xué)科中有著(zhù)廣泛的應用;函數與代數式、方程、不等式等內容聯(lián)系非常密切;函數是近一步學(xué)習數學(xué)的重要基礎知識;函數的概念是運動(dòng)變化和對立統一等觀(guān)點(diǎn)在數學(xué)中的具體體現;函數概念及其反映出的數學(xué)思想方法已廣泛滲透到數學(xué)的各個(gè)領(lǐng)域,《函數》教學(xué)設計。

  對函數概念本質(zhì)的理解,首先應通過(guò)與初中定義的比較、與其他知識的聯(lián)系以及不斷地應用等,初步理解用集合與對應語(yǔ)言刻畫(huà)的函數概念.其次在后續的學(xué)習中通過(guò)基本初等函數,引導學(xué)生以具體函數為依托、反復地、螺旋式上升地理解函數的本質(zhì)。

  教學(xué)重點(diǎn)是函數的概念,難點(diǎn)是對函數概念的本質(zhì)的理解。

  學(xué)生現狀

  學(xué)生在第一章的時(shí)候已經(jīng)學(xué)習了集合的概念,同時(shí)在初中時(shí)已學(xué)過(guò)一次函數、反比例函數和二次函數,那么如何用集合知識來(lái)理解函數概念,結合原有的知識背景,活動(dòng)經(jīng)驗和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習興趣,讓學(xué)生積極參與到學(xué)習活動(dòng)中,達到理解知識、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習體驗和情感體驗,是在教學(xué)設計中應思考的。

  二、教學(xué)三維目標分析

  1、知識與技能(重點(diǎn)和難點(diǎn))

  (1)、通過(guò)實(shí)例讓學(xué)生能夠進(jìn)一步體會(huì )到函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型。并且在此基礎上學(xué)習應用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用。不但讓學(xué)生能完成本節知識的學(xué)習,還能較好的復習前面內容,前后銜接。

  (2)、了解構成函數的三要素,缺一不可,會(huì )求簡(jiǎn)單函數的定義域、值域、判斷兩個(gè)函數是否相等等。

  (3)、掌握定義域的表示法,如區間形式等。

  (4)、了解映射的概念。

  2、過(guò)程與方法

  函數的概念及其相關(guān)知識點(diǎn)較為抽象,難以理解,學(xué)習中應注意以下問(wèn)題:

  (1)、首先通過(guò)多媒體給出實(shí)例,在讓學(xué)生以小組的形式開(kāi)展討論,運用猜想、觀(guān)察、分析、歸納、類(lèi)比、概括等方法,探索發(fā)現知識,找出不同點(diǎn)與相同點(diǎn),實(shí)現學(xué)生在教學(xué)中的主體地位,培養學(xué)生的創(chuàng )新意識。

  (2)、面向全體學(xué)生,根據課本大綱要求授課。

  (3)、加強學(xué)法指導,既要讓學(xué)生學(xué)會(huì )本節知識點(diǎn),也要讓學(xué)生會(huì )自我主動(dòng)學(xué)習。

  3、情感態(tài)度與價(jià)值觀(guān)

  (1)、通過(guò)多媒體給出實(shí)例,學(xué)生小組討論,給出自己的結論和觀(guān)點(diǎn),加上老師的輔助講解,培養學(xué)生的實(shí)踐能力和和大膽創(chuàng )新意識

  (2)、讓學(xué)生自己討論給出結論,培養學(xué)生的自我動(dòng)手能力和小組團結能力。

  三、教學(xué)器材

  多媒體ppt課件

  四、教學(xué)過(guò)程

  教學(xué)內容教師活動(dòng)學(xué)生活動(dòng)設計意圖

  《函數》課題的引入(用時(shí)一分鐘)配著(zhù)簡(jiǎn)單的音樂(lè ),從簡(jiǎn)單的例子引入函數應用的廣泛,將同學(xué)們的視線(xiàn)引入函數的學(xué)習上聽(tīng)著(zhù)悠揚的音樂(lè ),讓同學(xué)們的視線(xiàn)全注意在老師所講的內容上從貼近學(xué)生生活入手,符合學(xué)生的認知特點(diǎn)。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數的世界,體現了新課標的理念:從知識走向生活

  知識回顧:初中所學(xué)習的函數知識(用時(shí)兩分鐘)回顧初中函數定義及其性質(zhì),簡(jiǎn)單回顧一次函數、二次函數、正比例函數、反比例函數的性質(zhì)、定義及簡(jiǎn)單作圖認真聽(tīng)老師回顧初中知識,發(fā)現異同在初中知識的基礎上引導學(xué)生向更深的內容探索、求知。即復習了所學(xué)內容又做了即將所學(xué)內容的鋪墊

  思考與討論:通過(guò)給出的問(wèn)題,引出本節課的主要內容(用時(shí)四分鐘)給出兩個(gè)簡(jiǎn)單的問(wèn)題讓同學(xué)們思考,講述初中內容無(wú)法給出正確答案,需要從新的高度來(lái)認識函數結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問(wèn)題,小組形式作討論,從簡(jiǎn)單問(wèn)題入手,循序漸進(jìn),引出本節主要知識,回顧前一節的集合感念,應用到本節知識,前后聯(lián)系、銜接

  新知識的講解:從概念開(kāi)始講解本節知識(用時(shí)三分鐘)詳細講解函數的知識,包括定義域,值域等,回到開(kāi)始提問(wèn)部分作答做筆記,專(zhuān)心聽(tīng)講講解函數概念,由知識講解回到問(wèn)題身上,解決問(wèn)題

  對提問(wèn)的回答(用時(shí)五分鐘)引導學(xué)生自己解決開(kāi)始所提的兩個(gè)問(wèn)題,然后同個(gè)互動(dòng)給出最后答案通過(guò)與老師共同討論回答開(kāi)始問(wèn)題,總結更好的掌握函數概念,通過(guò)問(wèn)題來(lái)更好的掌握知識

  函數區間(用時(shí)五分鐘)引入函數定義域的表示方法簡(jiǎn)潔明了的方法表示函數的定義域或值域,在集合表示方法的基礎上引入另一種方法

  注意點(diǎn)(用時(shí)三分鐘)做個(gè)簡(jiǎn)單的的回顧新內容,把難點(diǎn)重點(diǎn)提出來(lái),讓同學(xué)們記住通過(guò)問(wèn)題回答,概念解答,把重難點(diǎn)給出,提醒學(xué)生注意內容和知識點(diǎn)

  習題(用時(shí)十分鐘)給出習題,分析題意在稿紙上簡(jiǎn)單作答,回答問(wèn)題通過(guò)習題練習明確重難點(diǎn),把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系

  映射(用時(shí)兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學(xué)習給以后的知識內容做更好的鋪墊

  小結(用時(shí)五分鐘)簡(jiǎn)單講述本節的知識點(diǎn),重難點(diǎn)做筆記前后知識的連貫,總結,使學(xué)生更明白知識點(diǎn)

  五、教學(xué)評價(jià)

  為了使學(xué)生了解函數概念產(chǎn)生的背景,豐富函數的感性認識,獲得認識客觀(guān)世界的體驗,本課采用"突出主題,循序漸進(jìn),反復應用"的方式,在不同的場(chǎng)合考察問(wèn)題的不同側面,由淺入深。本課在教學(xué)時(shí)采用問(wèn)題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對函數概念的理解也逐層深入,從而準確理解函數的概念。函數引入中的三種對應,與初中時(shí)學(xué)習函數內容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應既是函數知識的生長(cháng)點(diǎn),又突出了函數的本質(zhì),為從數學(xué)內部研究函數打下了基礎。

  在培養學(xué)生的能力上,本課也進(jìn)行了整體設計,通過(guò)探究、思考,培養了學(xué)生的實(shí)踐能力、觀(guān)察能力、判斷能力;通過(guò)揭示對象之間的內在聯(lián)系,培養了學(xué)生的辨證思維能力;通過(guò)實(shí)際問(wèn)題的解決,培養了學(xué)生的'分析問(wèn)題、解決問(wèn)題和表達交流能力;通過(guò)案例探究,培養了學(xué)生的創(chuàng )新意識與探究能力。

  雖然函數概念比較抽象,難以理解,但是通過(guò)這樣的教學(xué)設計,學(xué)生基本上能很好地理解了函數概念的本質(zhì),達到了課程標準的要求,體現了課改的教學(xué)理念。

  《函數的概念》說(shuō)課稿 篇6

  教學(xué)目標:

  1.通過(guò)現實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數概念產(chǎn)生的背景,進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型,在此基礎上學(xué)習用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數的概念,掌握函數是特殊的數集之間的對應;

  2.了解構成函數的要素,理解函數的定義域、值域的定義,會(huì )求一些簡(jiǎn)單函數的定義域和值域;

  3.通過(guò)教學(xué),逐步培養學(xué)生由具體逐步過(guò)渡到符號化,代數式化,并能對以往學(xué)習過(guò)的知識進(jìn)行理性化思考,對事物間的聯(lián)系的一種數學(xué)化的思考.

  教學(xué)重點(diǎn):

  兩集合間用對應來(lái)描述函數的概念;求基本函數的定義域和值域.

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.情境.

  正方形的邊長(cháng)為a,則正方形的周長(cháng)為 ,面積為 .

  2.問(wèn)題.

  在初中,我們曾認識利用函數來(lái)描述兩個(gè)變量之間的關(guān)系,如何定義函數?常見(jiàn)的函數模型有哪些?

  二、學(xué)生活動(dòng)

  1.復述初中所學(xué)函數的概念;

  2.閱讀課本23頁(yè)的問(wèn)題(1)、(2)、(3),并分別說(shuō)出對其理解;

  3.舉出生活中的實(shí)例,進(jìn)一步說(shuō)明函數的對應本質(zhì).

  三、數學(xué)建構

  1.用集合的語(yǔ)言分別闡述23頁(yè)的問(wèn)題(1)、(2)、(3);

  問(wèn)題1 某城市在某一天24小時(shí)內的氣溫變化情況如下圖所示,試根據函數圖象回答下列問(wèn)題:

  (1)這一變化過(guò)程中,有哪幾個(gè)變量?

  (2)這幾個(gè)變量的范圍分別是多少?

  問(wèn)題2 略.

  問(wèn)題3 略(詳見(jiàn)23頁(yè)).

  2.函數:一般地,設A、B是兩個(gè)非空的數集,如果按某種對應法則f,對于集合A中的每一個(gè)元素x,在集合B中都有惟一的元素和它對應,這樣的對應叫做從A到B的一個(gè)函數,通常記為=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數=f(x)的定義域.

  (1)函數作為一種數學(xué)模型,主要用于刻畫(huà)兩個(gè)變量之間的關(guān)系;

  (2)函數的本質(zhì)是一種對應;

  (3)對應法則f可以是一個(gè)數學(xué)表達式,也可是一個(gè)圖形或是一個(gè)表格

  (4)對應是建立在A(yíng)、B兩個(gè)非空的數集之間.可以是有限集,當然也就可以是單元集,如f(x)=2x,(x=0).

  3.函數=f(x)的定義域:

  (1)每一個(gè)函數都有它的定義域,定義域是函數的生命線(xiàn);

  (2)給定函數時(shí)要指明函數的定義域,對于用解析式表示的集合,如果沒(méi)

  有指明定義域,那么就認為定義域為一切實(shí)數.

  四、數學(xué)運用

  例1.判斷下列對應是否為集合A 到 B的函數:

  (1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;

  (2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;

  (3)A={1,2,3,4,5},B=N,f:x→2x.

  練習:判斷下列對應是否為函數:

  (1)x→2x,x≠0,x∈R;

  (2)x→,這里2=x,x∈N,∈R。

  例2 求下列函數的定義域:

  (1)f(x)=x—1;(2)g(x)=x+1+1x。

  例3 下列各組函數中,是否表示同一函數?為什么?

  A.=x與=(x)2; B.=x2與=3x3;

  C.=2x-1(x∈R)與=2t-1(t∈R); D.=x+2x-2與=x2-4

  練習:課本26頁(yè)練習1~4,6.

  五、回顧小結

  1.生活中兩個(gè)相關(guān)變量的刻畫(huà)→函數→對應(A→B)

  2.函數的對應本質(zhì);

  3.函數的對應法則和定義域.

  《函數的概念》說(shuō)課稿 篇7

  教材分析:函數是描述客觀(guān)世界變化規律的重要數學(xué)模型.高中階段不僅把函數看成變量之間的依賴(lài)關(guān)系,同時(shí)還用集合與對應的語(yǔ)言刻畫(huà)函數,高中階段更注重函數模型化的思想.

  教學(xué)目的:

  (1)通過(guò)豐富實(shí)例,進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型,在此基礎上學(xué)習用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用;

  (2)了解構成函數的要素;

  (3)會(huì )求一些簡(jiǎn)單函數的定義域和值域;

  (4)能夠正確使用“區間”的符號表示某些函數的定義域;

  教學(xué)重點(diǎn):理解函數的模型化思想,用合與對應的語(yǔ)言來(lái)刻畫(huà)函數;

  教學(xué)難點(diǎn):符號“y=f(x)”的含義,函數定義域和值域的區間表示;

  教學(xué)過(guò)程:

  一、引入課題

  1.復習初中所學(xué)函數的概念,強調函數的模型化思想;

  2.閱讀課本引例,體會(huì )函數是描述客觀(guān)事物變化規律的數學(xué)模型的思想:

  (1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

  (2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

  (3)“八五”計劃以來(lái)我國城鎮居民的恩格爾系數與時(shí)間的變化關(guān)系問(wèn)題

  3.引導學(xué)生應用集合與對應的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴(lài)關(guān)系;

  4.根據初中所學(xué)函數的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數關(guān)系.

  二、新課教學(xué)

  (一)函數的有關(guān)概念

  1.函數的概念:

  設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range).

  注意:

  ○1“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

  ○2函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.

  2.構成函數的三要素:

  定義域、對應關(guān)系和值域

  3.區間的概念

  (1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;

  (2)無(wú)窮區間;

  (3)區間的數軸表示.

  4.一次函數、二次函數、反比例函數的定義域和值域討論

  (由學(xué)生完成,師生共同分析講評)

  (二)典型例題

  1.求函數定義域

  課本P20例1

  解:(略)

  說(shuō)明:

  ○1函數的定義域通常由問(wèn)題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;

  ○2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;

  ○3函數的定義域、值域要寫(xiě)成集合或區間的形式.

  鞏固練習:課本P22第1題

  2.判斷兩個(gè)函數是否為同一函數

  課本P21例2

  解:(略)

  說(shuō)明:

  ○1構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)

  ○2兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。

  鞏固練習:

  ○1課本P22第2題

  ○2判斷下列函數f(x)與g(x)是否表示同一個(gè)函數,說(shuō)明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  三、歸納小結,強化思想

  從具體實(shí)例引入了函數的的概念,用集合與對應的語(yǔ)言描述了函數的定義及其相關(guān)概念,介紹了求函數定義域和判斷同一函數的典型題目,引入了區間的概念來(lái)表示集合。

  四、作業(yè)布置

  課本P28習題1.2(A組)第1—7題(B組)第1題

  《函數的概念》說(shuō)課稿 篇8

  教學(xué)目標:

  1.進(jìn)一步理解用集合與對應的語(yǔ)言來(lái)刻畫(huà)的函數的概念,進(jìn)一步理解函數的本質(zhì)是數集之間的對應;

  2.進(jìn)一步熟悉與理解函數的定義域、值域的定義,會(huì )利用函數的定義域與對應法則判定有關(guān)函數是否為同一函數;

  3.通過(guò)教學(xué),進(jìn)一步培養學(xué)生由具體逐步過(guò)渡到符號化,代數式化,并能對以往學(xué)習過(guò)的知識進(jìn)行理性化思考,對事物間的聯(lián)系的一種數學(xué)化的思考.

  教學(xué)重點(diǎn):

  用對應來(lái)進(jìn)一步刻畫(huà)函數;求基本函數的定義域和值域.

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.情境.

  復述函數及函數的定義域的概念.

  2.問(wèn)題.

  概念中集合A為函數的定義域,集合B的作用是什么呢?

  二、學(xué)生活動(dòng)

  1.理解函數的值域的概念;

  2.能利用觀(guān)察法求簡(jiǎn)單函數的值域;

  3.探求簡(jiǎn)單的復合函數f(f(x))的定義域與值域.

  三、數學(xué)建構

  1.函數的值域:

  (1)按照對應法則f,對于A(yíng)中所有x的值的對應輸出值組成的集合稱(chēng)之

  為函數的值域;

  (2)值域是集合B的子集.

  2.x g(x) f(x) f(g(x)),其中g(shù)(x)的值域即為f(g(x))的定義域;

  四、數學(xué)運用

  (一)例題.

  例1 已知函數f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).

  例2 根據不同條件,分別求函數f(x)=(x-1)2+1的值域.

  (1)x∈{-1,0,1,2,3};

  (2)x∈R;

  (3)x∈[-1,3];

  (4)x∈(-1,2];

  (5)x∈(-1,1).

  例3 求下列函數的值域:

  ①= ;

  ②= .

  例4 已知函數f(x)與g(x)分別由下表給出:

  x1234x1234

  f(x)2341g(x)2143

  分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.

  (二)練習.

  (1)求下列函數的值域:

  ①=2-x2;

  ②=3-|x|.

  (2)已知函數f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).

  (3)已知函數f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現.

  (4)已知函數=f(x)的定義域為[-1,2],求f(x)+f(-x)的定義域.

  (5)已知f(x)的定義域為[-2,2],求f(2x),f(x2+1)的定義域.

  五、回顧小結

  函數的對應本質(zhì),函數的定義域與值域;

  利用分解的思想研究復合函數.

  六、作業(yè)

  課本P31-5,8,9.

  《函數的概念》說(shuō)課稿 篇9

  【高考要求】:三角函數的有關(guān)概念(B).

  【教學(xué)目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.

  理解任意角三角函數(正弦、余弦、正切)的定義;初步了解有向線(xiàn)段的概念,會(huì )利用單位圓中的三角函數線(xiàn)表示任意角的正弦、余弦、正切.

  【教學(xué)重難點(diǎn)】: 終邊相同的角的意義和任意角三角函數(正弦、余弦、正切)的定義.

  【知識復習與自學(xué)質(zhì)疑】

  一、問(wèn)題.

  1、角的概念是什么?角按旋轉方向分為哪幾類(lèi)?

  2、在平面直角坐標系內角分為哪幾類(lèi)?與 終邊相同的角怎么表示?

  3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數有什么樣的關(guān)系?

  4、弧度制下圓的弧長(cháng)公式和扇形的面積公式是什么?

  5、任意角的三角函數的定義是什么?在各象限的符號怎么確定?

  6、你能在單位圓中畫(huà)出正弦、余弦和正切線(xiàn)嗎?

  7、同角三角函數有哪些基本關(guān)系式?

  二、練習.

  1.給出下列命題:

  (1)小于 的角是銳角;

  (2)若 是第一象限的角,則 必為第一象限的角;

  (3)第三象限的角必大于第二象限的角;

  (4)第二象限的角是鈍角;

  (5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

  (6)角2 與角 的終邊不可能相同;

  (7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負半軸上。其中正確的命題的序號是

  2.設P 點(diǎn)是角終邊上一點(diǎn),且滿(mǎn)足 則 的值是

  3.一個(gè)扇形弧AOB 的面積是1 ,它的周長(cháng)為4 ,則該扇形的中心角= 弦AB長(cháng)=

  4.若 則角 的終邊在 象限。

  5.在直角坐標系中,若角 與角 的終邊互為反向延長(cháng)線(xiàn),則角 與角 之間的關(guān)系是

  6.若 是第三象限的角,則- , 的終邊落在何處?

  【交流展示、互動(dòng)探究與精講點(diǎn)撥】

  例1.如圖, 分別是角 的終邊.

  (1)求終邊落在陰影部分(含邊界)的所有角的集合;

  (2)求終邊落在陰影部分、且在 上所有角的集合;

  (3)求始邊在OM位置,終邊在ON位置的所有角的集合.

  例2.

  (1)已知角的終邊在直線(xiàn) 上,求 的值;

  (2)已知角的終邊上有一點(diǎn)A ,求 的值。

  例3.若 ,則 在第 象限.

  例4.若一扇形的周長(cháng)為20 ,則當扇形的圓心角 等于多少弧度時(shí),這個(gè)扇形的面積最大?最大面積是多少?

  【矯正反饋】

  1、若銳角 的終邊上一點(diǎn)的坐標為 ,則角 的弧度數為 .

  2、若 ,又 是第二,第三象限角,則 的取值范圍是 .

  3、一個(gè)半徑為 的扇形,如果它的周長(cháng)等于弧所在半圓的弧長(cháng),那么該扇形的圓心角度數是 弧度或角度,該扇形的面積是 .

  4、已知點(diǎn)P 在第三象限,則 角終邊在第 象限.

  5、設角 的終邊過(guò)點(diǎn)P ,則 的值為 .

  6、已知角 的終邊上一點(diǎn)P 且 ,求 和 的值.

  【遷移應用】

  1、經(jīng)過(guò)3小時(shí)35分鐘,分針轉過(guò)的角的弧度是 .時(shí)針轉過(guò)的角的弧度數是 .

  2、若點(diǎn)P 在第一象限,則在 內 的取值范圍是 .

  3、若點(diǎn)P從(1,0)出發(fā),沿單位圓 逆時(shí)針?lè )较蜻\動(dòng) 弧長(cháng)到達Q點(diǎn),則Q點(diǎn)坐標為 .

  4、如果 為小于360 的正角,且角 的7倍數的角的終邊與這個(gè)角的終邊重合,求角 的值.

【《函數的概念》說(shuō)課稿】相關(guān)文章:

《函數的概念》說(shuō)課稿01-31

《函數概念》說(shuō)課稿07-07

蘇教版《函數概念》說(shuō)課稿07-07

《函數的概念》說(shuō)課稿的內容04-09

高中函數概念說(shuō)課稿02-19

高中函數的概念說(shuō)課稿01-14

高中函數的概念說(shuō)課稿04-01

高中函數的概念說(shuō)課稿范文12-02

二次函數概念的說(shuō)課稿07-06

涿鹿县| 高邑县| 辽中县| 德昌县| 海淀区| 上思县| 金溪县| 栾川县| 冀州市| 凯里市| 河池市| 和顺县| 公主岭市| 连城县| 思茅市| 莆田市| 康马县| 宁波市| 志丹县| 安康市| 勐海县| 贡山| 濉溪县| 仙桃市| 上饶县| 新昌县| 离岛区| 万全县| 荔波县| 修水县| 江达县| 浦东新区| 灌南县| 唐海县| 禹城市| 桦川县| 河北省| 四川省| 潼关县| 达拉特旗| 通山县|