【精選】初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,通過(guò)它可以正確認(rèn)識(shí)以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),讓我們好好寫(xiě)一份總結(jié)吧。那么你真的懂得怎么寫(xiě)總結(jié)嗎?以下是小編幫大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1
字母表示數(shù)
代數(shù)式的概念:
用運(yùn)算符號(hào)(加、減、乘除、乘方、開(kāi)方等)把數(shù)與表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。
注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);
②代數(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;
③代數(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問(wèn)題的要符合實(shí)際問(wèn)題的意義。
代數(shù)式的書(shū)寫(xiě)格式:
①代數(shù)式中出現(xiàn)乘號(hào),通常省略不寫(xiě),如vt;
②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫(xiě)在字母前面,如4a;
③帶分?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)后與字母相乘,如應(yīng)寫(xiě)作;
④數(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;
⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫(xiě)法來(lái)寫(xiě),如4÷(a-4)應(yīng)寫(xiě)作;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的'雙重作用。
⑥在表示和(或)差的代差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來(lái),再將單位名稱寫(xiě)在式子的后面,如平方米
代數(shù)式的系數(shù):
代數(shù)式中的數(shù)字中的數(shù)字因數(shù)叫做代數(shù)式的系數(shù)。如3x,4y的系數(shù)分別為3,4。
注意:①單個(gè)字母的系數(shù)是1,如a的系數(shù)是1;
②只含字母因數(shù)的代數(shù)式的系數(shù)是1或-1,如-ab的系數(shù)是-1。a3b的系數(shù)是1
代數(shù)式的項(xiàng):
代數(shù)式表示6x2、-2x、-7的和,6x2、-2x、-7是它的項(xiàng),其中把不含字母的項(xiàng)叫做常數(shù)項(xiàng)
注意:在交待某一項(xiàng)時(shí),應(yīng)與前面的符號(hào)一起交待。
同類項(xiàng):
所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
注意:①判斷幾個(gè)代數(shù)式是否是同類項(xiàng)有兩個(gè)條件:a.所含字母相同;b.相同字母的指數(shù)也相同。這兩個(gè)條件缺一不可;
②同類項(xiàng)與系數(shù)無(wú)關(guān),與字母的排列順序無(wú)關(guān);
③幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。
合差同類項(xiàng):
把代數(shù)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。
①合并同類項(xiàng)的理論根據(jù)是逆用乘法分配律;
②合并同類項(xiàng)的法則是把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
注意:
①如果兩個(gè)同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后結(jié)果為0;
②不是同類項(xiàng)的不能合并,不能合并的項(xiàng),在每步運(yùn)算中都要寫(xiě)上;
③只要不再有同類項(xiàng),就是最后結(jié)果,結(jié)果還是代數(shù)式。
根據(jù)去括號(hào)法則去括號(hào):
括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。
根據(jù)分配律去括號(hào):
括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成-1,根據(jù)乘法的分配律用+1或-1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。
注意:
①去括號(hào)時(shí),要連同括號(hào)前面的符號(hào)一起去掉;
②去括號(hào)時(shí),首先要弄清楚括號(hào)前是“+”號(hào)還是“-”號(hào);
③改變符號(hào)時(shí),各項(xiàng)都變號(hào);不改變符號(hào)時(shí),各項(xiàng)都不變號(hào)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2
絕對(duì)值
⒈絕對(duì)值的幾何定義
一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對(duì)值,記作|a|。
2.絕對(duì)值的代數(shù)定義
⑴一個(gè)正數(shù)的絕對(duì)值是它本身;⑵一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);⑶0的絕對(duì)值是0.
可用字母表示為:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可歸納為①:a≥0,<═>|a|=a(非負(fù)數(shù)的絕對(duì)值等于本身;絕對(duì)值等于本身的數(shù)是非負(fù)數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對(duì)值等于其相反數(shù);絕對(duì)值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題
如數(shù)軸所示,化簡(jiǎn)下列各數(shù)
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由題知道,因?yàn)閍>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.絕對(duì)值的性質(zhì)
任何一個(gè)有理數(shù)的絕對(duì)值都是非負(fù)數(shù),也就是說(shuō)絕對(duì)值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的'絕對(duì)值是0;絕對(duì)值是0的數(shù)是0.即:a=0<═>|a|=0;
⑵一個(gè)數(shù)的絕對(duì)值是非負(fù)數(shù),絕對(duì)值最小的數(shù)是0.即:|a|≥0;
⑶任何數(shù)的絕對(duì)值都不小于原數(shù)。即:|a|≥a;
⑷絕對(duì)值是相同正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;
⑸互為相反數(shù)的兩數(shù)的絕對(duì)值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
⑹絕對(duì)值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
⑺若幾個(gè)數(shù)的絕對(duì)值的和等于0,則這幾個(gè)數(shù)就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。
(非負(fù)數(shù)的常用性質(zhì):若幾個(gè)非負(fù)數(shù)的和為0,則有且只有這幾個(gè)非負(fù)數(shù)同時(shí)為0)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數(shù)特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數(shù)記憶順口溜
1三角函數(shù)記憶口訣
“奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。
2符號(hào)判斷口訣
全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱。口訣中未提及的都是負(fù)值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對(duì)應(yīng)的三角函數(shù)為正值。
3三角函數(shù)順口溜
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的.角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:
sin( )=-sin
cos( )=-cos
tan( )=tan
cot( )=cot
公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:
sin( )=sin
cos( )=-cos
tan( )=-tan
cot( )=-cot
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4
1、重心的定義:
平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
⑴線段的重心就是線段的中點(diǎn);
⑵平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn);
⑶三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;
⑷任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。
提示:⑴無(wú)論幾何圖形的.形狀如何,重心都有且只有一個(gè);
⑵從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見(jiàn)圖形重心的性質(zhì):
⑴線段的重心把線段分為兩等份;
⑵平行四邊形的重心把對(duì)角線分為兩等份;
⑶三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對(duì)邊中點(diǎn)距離占1份)。
上面對(duì)重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。
①直線和圓無(wú)公共點(diǎn),稱相離。 AB與圓O相離,d>r。
②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5
有兩條邊相等的三角形叫等腰三角形
相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對(duì)的邊叫底;腰與底的夾角叫底角。
等腰三角形性質(zhì)
(1)具有一般三角形的邊角關(guān)系
(2)等邊對(duì)等角;
(3)底邊上的高、底邊上的中線、頂角平分線互相重合;
(4)是軸對(duì)稱圖形,對(duì)稱軸是頂角平分線;
(5)底邊小于腰長(zhǎng)的兩倍并且大于零,腰長(zhǎng)大于底邊的一半;
(6)頂角等于180減去底角的兩倍;
(7)頂角可以是銳角、直角、鈍角而底角只能是銳角
等腰三角形分類:可分為腰和底邊不等的等腰三角形及等邊三角形
等邊三角形性質(zhì)
①具備等腰三角形的一切性質(zhì)。
②等邊三角形三條邊都相等,三個(gè)內(nèi)角都相等并且每個(gè)都是60。
等腰三角形的判定
①利用定義;②等角對(duì)等邊;
等邊三角形的判定
①利用定義:三邊相等的三角形是等邊三角形
②有一個(gè)角是60的`等腰三角形是等邊三角形.
含30銳角的直角三角形邊角關(guān)系:在直角三角形中,30銳角所對(duì)的直角邊等于斜邊的一半。
三角形邊角的不等關(guān)系;長(zhǎng)邊對(duì)大角,短邊對(duì)小角;大角對(duì)長(zhǎng)邊,小角對(duì)短邊。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6
動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),判斷函數(shù)圖象.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),判斷函數(shù)圖象.
圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:
1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,判斷函數(shù)圖象.
3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,判斷函數(shù)圖象.
動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的`邊或角的關(guān)系.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.
4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.
總結(jié)反思:
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的
解答函數(shù)的圖象問(wèn)題一般遵循的步驟:
1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7
一次函數(shù)的圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;
正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;
兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;
k為負(fù)來(lái)左下展,變化規(guī)律正相反;
k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
拓展閱讀:一次函數(shù)的解題方法
理解一次函數(shù)和其它知識(shí)的聯(lián)系
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
掌握一次函數(shù)的解析式的特征
一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒(méi)有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。
應(yīng)用一次函數(shù)解決實(shí)際問(wèn)題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);
3、在實(shí)際問(wèn)題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);
4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。
數(shù)形結(jié)合
方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來(lái)認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。
如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問(wèn)題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。
第一章有理數(shù)
一、正數(shù)和負(fù)數(shù)
⒈正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)
②正數(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長(zhǎng)與降低等等是相對(duì)相反量,它們計(jì)數(shù):比原先多了的數(shù),增加增長(zhǎng)了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的`數(shù)一般記為負(fù)數(shù)。 3.0表示的意義
⑴0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;
⑵0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。
二、有理數(shù)
1、有理數(shù)的概念
⑴正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)
⑶正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8?也是偶數(shù),—1,—3,—5?也是奇數(shù)。
2、(1)凡能寫(xiě)成q(p,q為整數(shù)且p?0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)p
分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);?不是有理數(shù);
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8
1、定理1:關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
2、定理2:關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
3、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
4、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等
5、等腰梯形的兩條對(duì)角線相等
6、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯:形是等腰梯形
7、對(duì)角線相等的梯形是等腰梯形
8、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
9、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
10、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
11、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
12、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半:L=(a+b)÷2:S=L×h
13、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc:如果:ad=bc:,那么a:b=c:d
14、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
15、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
16、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
17、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
18、定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
19、平行于三角形的一邊,并且和其他兩邊相交的直線,:所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
20、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
21、相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
22、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
23、判定定理2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
24、判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
25、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
26、性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
27、性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比
28、性質(zhì)定理3:相似三角形面積的比等于相似比的平方
29、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
30、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
31、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
32、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
33、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
34、同圓或等圓的半徑相等
35、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
36、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
37、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
38、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
39、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。
40、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
41、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
42、推論2:圓的兩條平行弦所夾的弧相等
43、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
44、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的.弦相等,所對(duì)的弦的弦心距相等
45、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
46、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
47、推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
48、推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
49、推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
50、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
51、①直線L和⊙O相交:d
②直線L和⊙O相切:d=r
③直線L和⊙O相離:d>r
52、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
53、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
54、推論1:經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
55、推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
56、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
57、圓的外切四邊形的兩組對(duì)邊的和相等
58、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角
59、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
60、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
61、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
62、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
63、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條:割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
64、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
65、①兩圓外離:d>R+r:②兩圓外切:d=R+r③兩圓相交:R-rr)
④兩圓內(nèi)切:d=R-r(R>r):⑤兩圓內(nèi)含:dr)
66、定理:相交兩圓的連心線垂直平分兩圓的公共弦
67、定理:把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
68、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
69、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
70、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
71、正n邊形的面積Sn=pnrn/2:p表示正n邊形的周長(zhǎng)
72、正三角形面積√3a/4:a表示邊長(zhǎng)
73、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
74、弧長(zhǎng)計(jì)算公式:L=n兀R/180
75、扇形面積公式:S扇形=n兀R^2/360=LR/2
76、內(nèi)公切線長(zhǎng)=:d-(R-r):外公切線長(zhǎng)=:d-(R+r):本回答被提問(wèn)者采納
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見(jiàn)考法
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的.計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
初中數(shù)學(xué)知識(shí)點(diǎn)梳理
1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。
4.列一元一次方程解應(yīng)用題:
(1)讀題分析法:多用于“和,差,倍,分問(wèn)題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。
(2)畫(huà)圖分析法:多用于“行程問(wèn)題”
利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。
11.列方程解應(yīng)用題的常用公式:
(1)行程問(wèn)題:距離=速度·時(shí)間;
(2)工程問(wèn)題:工作量=工效·工時(shí);
(3)比率問(wèn)題:部分=全體·比率;
(4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤(rùn)=售價(jià)—成本,;
(6)周長(zhǎng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長(zhǎng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè)很容易激起學(xué)生對(duì)數(shù)學(xué)的樂(lè)趣,所以要注意引導(dǎo)學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過(guò)程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a注:韋達(dá)定理
5、判別式
①b2-4a=0注:方程有相等的兩實(shí)根
②b2-4ac>0注:方程有一個(gè)實(shí)根
③b2-4ac<0注:方程有共軛復(fù)數(shù)根
6、三角函數(shù)公式
①兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
②倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
③半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
④和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
⑤某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
⑥正弦定理
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
⑦余弦定理
b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
⑧圓的方程
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
⑨立體體積與側(cè)面積
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c*h
正棱錐側(cè)面積S=1/2c*h正棱臺(tái)側(cè)面積S=1/2(c+c)h
圓臺(tái)側(cè)面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長(zhǎng)公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=s*h圓柱體V=pi*r2h
二、初中幾何公式
1、平行線證明
①經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
②如果兩條直線都和第三條直線平行,這兩條直線也互相平行
③同位角相等,兩直線平行
④內(nèi)錯(cuò)角相等,兩直線平行
⑤同旁內(nèi)角互補(bǔ),兩直線平行
⑥兩直線平行,同位角相等
⑦兩直線平行,內(nèi)錯(cuò)角相等
⑧兩直線平行,同旁內(nèi)角互補(bǔ)
2、全等三角形證明
①邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
②角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
③推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
④邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
⑤斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
3、三角形基本定理
①定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
②定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
③角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
④等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
⑤推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
⑥等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
⑦推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
⑧等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
⑨直角三角形
4、多邊形定理
①定理四邊形的內(nèi)角和等于360°
②四邊形的外角和等于360°
③多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
④推論任意多邊的外角和等于360°
5、平行四邊形證明與等腰梯形證明
①平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
②平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
③平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
……
④矩形性質(zhì)定理1矩形的四個(gè)角都是直角
⑤矩形性質(zhì)定理2矩形的對(duì)角線相等
……
⑥等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
⑦等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
⑧推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
⑨推論2經(jīng)過(guò)三角形一邊的`中點(diǎn)與另一邊平行的直線,必平分第三邊
7、相似三角形證明
①相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
②判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
③判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
④定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
⑤性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
⑥性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
⑦性質(zhì)定理3相似三角形面積的比等于相似比的平方
8、弦和圓的證明
①定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
②垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
③推論1
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
④推論2圓的兩條平行弦所夾的弧相等
⑤圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
⑥定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦
相等,所對(duì)的弦的弦心距相等
⑦線與圓的位置關(guān)系
直線L和⊙O相交d 直線L和⊙O相切d=r 直線L和⊙O相離d>r ⑧圓與圓之間的位置關(guān)系 兩圓外離d>R+r②兩圓外切d=R+r 兩圓相交R-r 兩圓內(nèi)切d=R-r(R>r) 兩圓內(nèi)含dr) QQ截圖20150129173906.jpg 三、數(shù)學(xué)學(xué)習(xí)方法 1、突出一個(gè)“勤”字(克服一個(gè)“惰”字) 數(shù)學(xué)家華羅庚曾經(jīng)說(shuō)過(guò):“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補(bǔ)拙是良訓(xùn),一分辛勞一分才“:我們?cè)趯W(xué)習(xí)的時(shí)候要突出一個(gè)勤字,克服一個(gè)“懶”字,怎么突出“勤”字,從這個(gè)字面上來(lái)看,要做到五勤:“耳勤”“眼勤”(耳朵聽(tīng),眼睛看,接受信息) “口勤”(討論,回答問(wèn)題,而不是講話,消化信息)“腦勤”(善于思考問(wèn)題,積極思考問(wèn)題——吸收、儲(chǔ)存信息)那是不是做到以上四點(diǎn)就行了呢?不是。這個(gè)字還有缺陷,在聰下面加上“手” “手勤”(動(dòng)手多實(shí)踐,不僅光做題,做課件,做模型) 這樣的人聰明不聰明? 最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽(tīng)講(這是根本)回家先復(fù)習(xí)再做題如果課聽(tīng)不好,就別想消化知識(shí) 2、學(xué)好初中數(shù)學(xué)還有兩個(gè)要點(diǎn),要狠抓兩個(gè)要點(diǎn): 學(xué)好數(shù)學(xué),一要(動(dòng)手),二要(動(dòng)腦)。動(dòng)腦就是要學(xué)會(huì)觀察分析問(wèn)題,學(xué)會(huì)思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問(wèn)幾個(gè)為什么。動(dòng)手就是多實(shí)踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個(gè)要點(diǎn)大家要記住。“動(dòng)腦又動(dòng)手,才能最大地發(fā)揮大腦的效率” 3、做到“三個(gè)一遍” 大家聽(tīng)過(guò)“失敗是成功之母”聽(tīng)過(guò)“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國(guó)的哲學(xué)家)——“知識(shí)就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下: “上課要認(rèn)真聽(tīng)一遍,動(dòng)手推一遍,想一遍” “下課看” “考試前” 4、重視“四個(gè)依據(jù)” 讀好一本教科書(shū)——它是教學(xué)、中考的主要依據(jù); 記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶; 做好做凈一本習(xí)題集——它是使知識(shí)拓寬; 記好一本心得筆記,最好每人自己準(zhǔn)備一本錯(cuò)題集 1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。 2、菱形的性質(zhì): ⑴矩形具有平行四邊形的一切性質(zhì); ⑵菱形的四條邊都相等; ⑶菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。 ⑷菱形是軸對(duì)稱圖形。 提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。 3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。 4、因式分解要素: ①結(jié)果必須是整式 ②結(jié)果必須是積的形式 ③結(jié)果是等式 ④因式分解與整式乘法的關(guān)系:m(a+b+c) 5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。 6、公因式確定方法: ①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。 ②相同字母取最低次冪 ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。 7、提取公因式步驟: ①確定公因式。 ②確定商式 ③公因式與商式寫(xiě)成積的'形式。 8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。 9、中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0 10、平方根性質(zhì): ①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。 ②0的平方根是它本身0。 ③負(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。 11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。 12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0 13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。 14、求正數(shù)a的算術(shù)平方根的方法; 完全平方數(shù)類型: ①想誰(shuí)的平方是數(shù)a。 ②所以a的平方根是多少。 ③用式子表示。 求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。 一、實(shí)數(shù) 1.平方根性質(zhì): (1)一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù); (2)零的平方根是零; (3)負(fù)數(shù)沒(méi)有平方根。 2.算術(shù)平方根性質(zhì): (1)一個(gè)正數(shù)的正的平方根叫做它的算術(shù)平方根; (2)零的算術(shù)平方根是零; (3)負(fù)數(shù)沒(méi)有算術(shù)平方根。 3.立方根性質(zhì): (1)正數(shù)的立方根是正數(shù); (2)零的立方根是零; (3)負(fù)數(shù)的立方根是負(fù)數(shù)。 4.實(shí)數(shù)的性質(zhì): (1)零是唯一沒(méi)有平方根的數(shù); (2)正數(shù)和負(fù)數(shù)可以沒(méi)有算術(shù)平方根; (3)任何實(shí)數(shù)的立方根只有唯一的一個(gè); (4)正數(shù)的立方根與它本身和零同類。 二、整式的運(yùn)算 1.整式范圍: (1)整式可以化為分?jǐn)?shù)或整數(shù); (2)整式可以化為負(fù)數(shù)或非負(fù)數(shù); (3)整式可以化為奇數(shù)或偶數(shù); (4)整式可以化簡(jiǎn)為分?jǐn)?shù)指數(shù)冪。 2.單項(xiàng)式: (1)單項(xiàng)式的系數(shù)是數(shù)字因數(shù); (2)一個(gè)單項(xiàng)式中所有字母的指數(shù)的和叫做單項(xiàng)式的次數(shù)。 3.多項(xiàng)式: (1)多項(xiàng)式的每一項(xiàng)都是一個(gè)單項(xiàng)式; (2)一個(gè)多項(xiàng)式的項(xiàng)數(shù)與多項(xiàng)式中含有幾個(gè)單項(xiàng)式有關(guān)。 4.同底數(shù)冪的乘法: (1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加; (2)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。 5.冪的乘方: 冪的乘方,底數(shù)不變,指數(shù)相乘。 6.積的乘方: (1)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘; (2)1的乘方等于1。 7.同底數(shù)冪的除法: (1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減; (2)0的任何正整數(shù)次冪都是0。 8.分式: (1)分式是整式的一種,在整式中區(qū)別于整式,分式的分母中必須含有字母; (2)分式的值等于分子除以分母。 9.分式的運(yùn)算: (1)分式的乘方:分式與分式相乘,再把被乘式的.分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母; (2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母; (3)分式的加減:異分母分式的加減運(yùn)算,為了使不同分母的分?jǐn)?shù)直接相加減不便,因此常把不同分母的分?jǐn)?shù)分別化成與原來(lái)的分母相同的分母后再相加減。 三、方程與方程組 1.方程: (1)含有未知數(shù)的等式叫方程; (2)使方程左右兩邊相等的未知數(shù)的值,叫做方程的解; (3)求方程的解的過(guò)程叫做解方程。 2.方程的解: (1)能使方程左右兩邊相等的未知數(shù)的值; (2)一個(gè)數(shù)(它不一定是數(shù),也可以是符號(hào)和運(yùn)算)是某一等式(含有未知數(shù)的等式)的解,那么這個(gè)數(shù)就叫做該等式的解。 3.一元一次方程: (1)只有一個(gè)未知數(shù); (2)未知數(shù)的最高次數(shù)為1; (3)整式方程。 4.方程的解法: (1)去分母:在方程兩端同乘各分母的最小公倍數(shù); (2)去括號(hào):去括號(hào)要變號(hào); (3)移項(xiàng):把含有未知數(shù)的項(xiàng)移到等號(hào)的一邊,其他項(xiàng)移到另一邊; (4)合并同類項(xiàng):化未知數(shù)為已知數(shù); (5)系數(shù)化成1:在方程兩端同除以未知數(shù)的系數(shù)。 5.列方程解應(yīng)用題 一.算法,概率和統(tǒng)計(jì) 1.算法初步(約12課時(shí)) (1)算法的含義、程序框圖 ①通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(如,二元一次方程組求解等問(wèn)題),體會(huì)算法的思想,了解算法的含義。 ②通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中(如,三元一次方程組求解等問(wèn)題),理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。 (2)基本算法語(yǔ)句 經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句--輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。 (3)通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。 3.概率(約8課時(shí)) (1)在具體情境中,了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,進(jìn)一步了解概率的意義以及頻率與概率的區(qū)別。 (2)通過(guò)實(shí)例,了解兩個(gè)互斥事件的概率加法公式。 (3)通過(guò)實(shí)例,理解古典概型及其概率計(jì)算公式,會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。 (4)了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法(包括計(jì)算器產(chǎn)生隨機(jī)數(shù)來(lái)進(jìn)行模擬)估計(jì)概率,初步體會(huì)幾何概型的意義(參見(jiàn)例3)。 (5)通過(guò)閱讀材料,了解人類認(rèn)識(shí)隨機(jī)現(xiàn)象的過(guò)程。 2.統(tǒng)計(jì)(約16課時(shí)) (1)隨機(jī)抽樣 ①能從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題。 ②結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性。 ③在參與解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;通過(guò)對(duì)實(shí)例的分析,了解分層抽樣和系統(tǒng)抽樣方法。 ④能通過(guò)試驗(yàn)、查閱資料、設(shè)計(jì)調(diào)查問(wèn)卷等方法收集數(shù)據(jù)。 (2)用樣本估計(jì)總體 ①通過(guò)實(shí)例體會(huì)分布的意義和作用,在表示樣本數(shù)據(jù)的過(guò)程中,學(xué)會(huì)列頻率分布表、畫(huà)頻率分布直方圖、頻率折線圖、莖葉圖(參見(jiàn)例1),體會(huì)他們各自的特點(diǎn)。 ②通過(guò)實(shí)例理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差。 ③能根據(jù)實(shí)際問(wèn)題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并作出合理的解釋。 ④在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征;初步體會(huì)樣本頻率分布和數(shù)字特征的隨機(jī)性。 ⑤會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡(jiǎn)單的實(shí)際問(wèn)題;能通過(guò)對(duì)數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認(rèn)識(shí)統(tǒng)計(jì)的作用,體會(huì)統(tǒng)計(jì)思維與確定性思維的差異。 ⑥形成對(duì)數(shù)據(jù)處理過(guò)程進(jìn)行初步評(píng)價(jià)的意識(shí)。 (3)變量的相關(guān)性 ①通過(guò)收集現(xiàn)實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系。 ②經(jīng)歷用不同估算方法描述兩個(gè)變量線性相關(guān)的過(guò)程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。 二.常用邏輯用語(yǔ) 1。命題及其關(guān)系 ①了解命題的逆命題、否命題與逆否命題。 ②理解必要條件、充分條件與充要條件的意義,會(huì)分析四種命題的相互關(guān)系。 (2)簡(jiǎn)單的邏輯聯(lián)結(jié)詞 通過(guò)數(shù)學(xué)實(shí)例,了解“或”、“且”、“非”的含義。 (3)全稱量詞與存在量詞 ①通過(guò)生活和數(shù)學(xué)中的.豐富實(shí)例,理解全稱量詞與存在量詞的意義。 ②能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定。 3.導(dǎo)數(shù)及其應(yīng)用(約16課時(shí)) (1)導(dǎo)數(shù)概念及其幾何意義 ①通過(guò)對(duì)大量實(shí)例的分析,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵(參見(jiàn)例2、例3)。 ②通過(guò)函數(shù)圖像直觀地理解導(dǎo)數(shù)的幾何意義。 (2)導(dǎo)數(shù)的運(yùn)算 ①能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c,y=x,y=x2,y=1/x的導(dǎo)數(shù)。 ②能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。 ③會(huì)使用導(dǎo)數(shù)公式表。 (3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 ①結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系(參見(jiàn)例4);能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間。 ②結(jié)合函數(shù)的圖像,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)的極大值、極小值,以及在給定區(qū)間上不超過(guò)三次的多項(xiàng)式函數(shù)的最大值、最小值。2.圓錐曲線與方程(約12課時(shí)) (1)了解圓錐曲線的實(shí)際背景,感受圓錐曲線在刻畫(huà)現(xiàn)實(shí)世界和解決實(shí)際問(wèn)題中的作用。 (2)經(jīng)歷從具體情境中抽象出橢圓模型的過(guò)程(參見(jiàn)例1),掌握橢圓的定義、標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì)。 (3)了解拋物線、雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡(jiǎn)單幾何性質(zhì)。 (4)通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。 (5)了解圓錐曲線的簡(jiǎn)單應(yīng)用。 三.統(tǒng)計(jì)案例(約14課時(shí)) 通過(guò)典型案例,學(xué)習(xí)下列一些常見(jiàn)的統(tǒng)計(jì)方法,并能初步應(yīng)用這些方法解決一些實(shí)際問(wèn)題。 ①通過(guò)對(duì)典型案例(如“肺癌與吸煙有關(guān)嗎”等)的探究,了解獨(dú)立性檢驗(yàn)(只要求2×2列聯(lián)表)的基本思想、方法及初步應(yīng)用。 ②通過(guò)對(duì)典型案例(如“質(zhì)量控制”、“新藥是否有效”等)的探究,了解實(shí)際推斷原理和假設(shè)檢驗(yàn)的基本思想、方法及初步應(yīng)用(參見(jiàn)例1)。 ③通過(guò)對(duì)典型案例(如“昆蟲(chóng)分類”等)的探究,了解聚類分析的基本思想、方法及初步應(yīng)用。 ④通過(guò)對(duì)典型案例(如“人的體重與身高的關(guān)系”等)的探究,進(jìn)一步了解回歸的基本思想、方法及初步應(yīng)用。 2.推理與證明(約10課時(shí)) (1)合情推理與演繹推理 ①結(jié)合已學(xué)過(guò)的數(shù)學(xué)實(shí)例和生活中的實(shí)例,了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的。推理,體會(huì)并認(rèn)識(shí)合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用(參見(jiàn)例2、例3)。 ②結(jié)合已學(xué)過(guò)的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會(huì)演繹推理的重要性,掌握演繹推理的基本方法,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理。 ③通過(guò)具體實(shí)例,了解合情推理和演繹推理之間的聯(lián)系和差異。 (2)直接證明與間接證明 ①結(jié)合已經(jīng)學(xué)過(guò)的數(shù)學(xué)實(shí)例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過(guò)程、特點(diǎn)。 ②結(jié)合已經(jīng)學(xué)過(guò)的數(shù)學(xué)實(shí)例,了解間接證明的一種基本方法--反證法;了解反證法的思考過(guò)程、特點(diǎn)。 數(shù)學(xué)概率知識(shí)點(diǎn)匯總 第一部分:隨機(jī)事件和概率 (1)樣本空間與隨機(jī)事件 (2)概率的定義與性質(zhì)(含古典概型、幾何概型、加法公式) (3)條件概率與概率的乘法公式 (4)事件之間的關(guān)系與運(yùn)算(含事件的獨(dú)立性) (5)全概公式與貝葉斯公式 (6)伯努利概型 其中:條件概率和獨(dú)立為本章的重點(diǎn),這也是后續(xù)章節(jié)的難點(diǎn)之一,大家一定要引起重視 第二部分:隨機(jī)變量及其概率分布 (1)隨機(jī)變量的概念及分類 (2)離散型隨機(jī)變量概率分布及其性質(zhì) (3)連續(xù)型隨機(jī)變量概率密度及其性質(zhì) (4)隨機(jī)變量分布函數(shù)及其性質(zhì) (5)常見(jiàn)分布 (6)隨機(jī)變量函數(shù)的分布 其中:要理解分布函數(shù)的定義,還有就是常見(jiàn)分布的分布律抑或密度函數(shù)必須記好且熟練。 第三部分:二維隨機(jī)變量及其概率分布 (1)多維隨機(jī)變量的概念及分類 (2)二維離散型隨機(jī)變量聯(lián)合概率分布及其性質(zhì) (3)二維連續(xù)型隨機(jī)變量聯(lián)合概率密度及其性質(zhì) (4)二維隨機(jī)變量聯(lián)合分布函數(shù)及其性質(zhì) (5)二維隨機(jī)變量的邊緣分布和條件分布 (6)隨機(jī)變量的獨(dú)立性 (7)兩個(gè)隨機(jī)變量的簡(jiǎn)單函數(shù)的分布 其中:本章是概率的重中之重,每年的解答題定會(huì)有一道與此知識(shí)點(diǎn)有關(guān),每個(gè)知識(shí)點(diǎn)都是重點(diǎn),一定要重視! 第四部分:隨機(jī)變量的數(shù)字特征 (1)隨機(jī)變量的數(shù)字期望的概念與性質(zhì) (2)隨機(jī)變量的方差的概念與性質(zhì) (3)常見(jiàn)分布的數(shù)字期望與方差 (4)隨機(jī)變量矩、協(xié)方差和相關(guān)系數(shù) 其中:本章只要清楚概念和運(yùn)算性質(zhì),其實(shí)就會(huì)顯得很簡(jiǎn)單,關(guān)鍵在于計(jì)算 第五部分:大數(shù)定律和中心極限定理 (1)切比雪夫不等式 (2)大數(shù)定律 (3)中心極限定理 其中:其實(shí)本章考試的可能性不大,最多以選擇填空的形式,但那也是十年前的事情了。 第六部分:數(shù)理統(tǒng)計(jì)的基本概念 (1)總體與樣本 (2)樣本函數(shù)與統(tǒng)計(jì)量 (3)樣本分布函數(shù)和樣本矩 其中:本章還是以概念為主,清楚概念后靈活運(yùn)用解決此類問(wèn)題不在話下 第七部分:參數(shù)估計(jì) (1)點(diǎn)估計(jì) (2)估計(jì)量的優(yōu)良性 (3)區(qū)間估計(jì) 一、平移變換: 1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。 2、性質(zhì): (1)平移前后圖形全等; (2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。 3、平移的作圖步驟和方法: (1)分清題目要求,確定平移的方向和平移的距離。 (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。 (3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn)。 (4)連接所作的.各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母。 (5)寫(xiě)出結(jié)論。 二、旋轉(zhuǎn)變換: 1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。 說(shuō)明: (1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的; (2)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)中心始終保持不動(dòng)。 (3)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)的方向是相同的。 (4)旋轉(zhuǎn)過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。 2、性質(zhì): (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等; (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角; (3)旋轉(zhuǎn)前、后的圖形全等。 3、旋轉(zhuǎn)作圖的步驟和方法: (1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角; (2)找出圖形的關(guān)鍵點(diǎn); (3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來(lái),然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn); (4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。 說(shuō)明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。 4、常見(jiàn)考法 (1)把平移旋轉(zhuǎn)結(jié)合起來(lái)證明三角形全等; (2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。 誤區(qū)提醒 (1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律; (2)平移與旋轉(zhuǎn)的性質(zhì)沒(méi)有掌握。 第一章:勾股定理 1.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。 2.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。 3.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。 4.如果直角三角形的`兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。 第二章:四邊形 1.平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。 2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。 3.矩形:有一個(gè)角是直角的平行四邊形叫做矩形。 4.正方形:有一組鄰邊相等的矩形叫做正方形。 5.平行四邊形的性質(zhì):對(duì)邊平行且相等;對(duì)角相等,且互補(bǔ);對(duì)角線互相平分。 6.菱形的性質(zhì):四邊相等;對(duì)角線互相垂直,且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半。 7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線相等。 8.正方形的性質(zhì):四個(gè)角都是直角,四條邊都相等;對(duì)角線相等,且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形被兩條對(duì)角線分成四個(gè)全等的直角三角形;正方形是特殊的長(zhǎng)方形,所以正方形具有矩形的一切性質(zhì)。 第三章:一次函數(shù) 1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過(guò)原點(diǎn)(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過(guò)原點(diǎn)(0,0)。 2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。 3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。 4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。 5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。 6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。 7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。 8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。 9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。 10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。 【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)09-19 初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-11 初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)大全12-09 初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)06-07 初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)04-12 初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-11 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-04 數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)03-27 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 14
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 15