sin(kπ+α)=(-1)ksinα(k∈Z);
cos(kπ+α)=(-1)kcosα(k∈Z);
tan(kπ+α)=(-1)ktanα(k∈Z);
cot(kπ+α)=(-1)kcotα(k∈Z)。">

久久99国产亚洲高清观看首页,久久久久综合精品福利啪啪,国产成人免费午夜在线观看,91视频网,久久精品国产福利国产琪琪,久久国产精品免费观看,国产精品成

高中三角函數(shù)解題模型及技巧

回答
瑞文問(wèn)答

2024-07-21

見(jiàn)“給角求值”問(wèn)題,運(yùn)用“新興”誘導(dǎo)公式 一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.
sin(kπ+α)=(-1)ksinα(k∈Z);
cos(kπ+α)=(-1)kcosα(k∈Z);
tan(kπ+α)=(-1)ktanα(k∈Z);
cot(kπ+α)=(-1)kcotα(k∈Z)。

擴(kuò)展資料

  見(jiàn)“sinα±cosα”問(wèn)題,運(yùn)用三角“八卦圖”

  1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

  2. sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

  3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);

  4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi)。

  見(jiàn)“知1求5”問(wèn)題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號(hào)看象限”。

  “見(jiàn)齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.

两当县| 渑池县| 那曲县| 梁河县| 南和县| 边坝县| 禄丰县| 曲沃县| 广安市| 新密市| 永昌县| 汉沽区| 庄浪县| 大港区| 射洪县| 新河县| 柘荣县| 万源市| 仙游县| 武邑县| 武乡县| 东光县| 城市| 克拉玛依市| 河南省| 红原县| 河源市| 金寨县| 盐源县| 南昌县| 淄博市| 米易县| 玉门市| 南乐县| 韩城市| 金阳县| 阳高县| 丹凤县| 蒙城县| 正定县| 长子县|